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Abstract 

Faster workstations with larger memories are making 
error estimation from full-matrix least-squares refinement 
a more practicable technique in protein crystallography. 
Using minimum variance weighting, estimated standard 
deviations of atomic positions have been calculated for 
two eye lens proteins from the inverse of a least-squares 
normal matrix which was full with respect to the coord- 
inate parameters, vB-crystallin, refined at 1.49 A yield- 
ed average errors in atomic positions which ranged from 
0.05 A for main-chain atoms to 0.27 A for unrestrained 
water molecules. The second structure used in this work 
was that of/3B2-crystallin refined at 2.1 A resolution 
where the corresponding average errors were 0.08 and 
0.35 A, respectively. The relative errors in atomic posi- 
tions are dependent on the number and kinds of restraints 
used in the refinements. It is also shown that minimum 
variance weighting leads to mean-square deviations from 
target geometry in the refined structures which are 
smaller than the variances used in the distance weighting. 

1. Introduction 

The random errors associated with the parameters of a 
refined crystal structure can be expressed in terms of 
estimated standard deviations (e.s.d.'s). These can be 
calculated and quoted for the x, y and z coordinates and 
root-mean-square displacements (U values) of each atom 
in the model structure. In small-molecule refinement 
e.s.d.'s are routinely calculated and indeed are required by 
some journals as a precondition for publication. For large 
molecules such as proteins, however, the calculations 
have not been regularly performed to date, being con- 
sidered too memory- and computationally intensive. 

The earliest methods for estimating errors in atomic 
positions employed gradients in electron density differ- 
ence maps (Cruickshank, 1949a,b) and such techniques 
have recently been revisited by Daopin et al. (1994). 
More often e.s.d.'s are obtained during structure refine- 
ment by calculating the least-squares covariance matrix 
from the inverse of the normal equations matrix 
(Cruickshank, 1965) as is implemented, for example, in 
the small-molecule refinement package SHELX (Shel- 
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drick, 1976, 1985, 1986; Robinson & Sheldrick, 1988). 
For proteins the matrices involved are very large (typi- 
cally several thousand rows and columns), and the 
inversion, which is an order n 3 process, soon becomes 
unfeasible. Over the past ten years protein crystal- 
lographers have used various techniques for estimating 
the random errors in the coordinates of their model 
structures. These include the Luzzati plot (Luzzati, 1952) 
and the a A plot of Read (1986) which both provide an 
estimate of the average positional error, I Arl, of a 
structure's coordinates. The Luzzati method assumes that 
the positional errors are normally distributed and that 
they alone account for the differences between the ]Fobs] r 

and [Fcalclr for all reflections (Cruickshank, 1996). The- 
oretical relationships between scattering angle and R 
factor, assuming different values of IArl, are then used to 
estimate the average error from the observed data. 

More recent attempts to estimate errors have included: 
the 'residue R factor' of Jones et al. (1991); the tabulated 
R indices of Elango & Parthasarathy (1990); the refine- 
ment protocol of Carson et al. (1994) which uses tem- 
perature factors, real-space fit residuals, geometric 
strains, dihedral angles and shifts from the previous 
refinement cycle; the 'discriminator' of Sevcik et al. 
(1993) which assesses the likely errors on each atom in 
terms of its temperature factor divided by its electron 
density in the final 2IF,,[ - IF,.I map, or U / p  where ,o is 
the electron density; an empirically derived six-parameter 
equation of Stroud & Fauman (1995), and the use of the 
diagonal elements of the inverse normal matrix in a final 
cycle of unrestrained least-squares refinement to give an 
estimate of the radial errors in atomic positions (Holland 
et al., 1990). 

Various studies have been performed to assess the 
accuracy of these estimation procedures. Fields et al. 
(1994) performed two independent refinements, using 
different refinement programs, using a single set of 
synchrotron X-ray data at 1.6 A resolution. The r.m.s. 
differences between the final models were 0.08 A for all 
C a atoms, 0.08 A for all backbone atoms and 0.12 A for 
all non-H atoms (excluding six obvious outliers). The 
estimated maximum average error from the Luzzati plot 
was found to be 0.13 A. Daopin et al. (1994) compared 
four different estimation methods, two for calculating 
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local errors and two (the Luzzati and a A plots) for overall 
errors, finding the methods to be in good agreement. On 
the other hand, Ohlendorf (1994) compared four inde- 
pendently refined X-ray crystal structures of human 
interleukin l fl, first re-refining them against a common 
data set to minimize the effects of different data sets and 
refinement protocols. He found that the final structures 
differed from one another by 0.84 A, which was roughly 
three times the error predicted by the Luzzati plots. 
Murshudov & Dodson (1997) have developed the theory 
of Cruickshank (1996) and used it to explore the rela- 
tionship between temperature factors and positional 
errors estimated from a diagonal second derivative 
matrix. 

In this paper, we have calculated e.s.d.'s of positional 
parameters for two proteins, using the full matrix of the 
normal equations of least-squares refinement. We will 
describe how these calculations have been implemented 
in a least-squares refinement program and will present 
the results for two trial proteins: ?,B- and flB2-crystallin. 
In particular, we analyse the relationship between atomic 
U values and the positional e.s.d.'s. 

1.1. Theory of  least squares 

In order to understand the error analysis in the present 
work, it is necessary to fully comprehend the statistical 
basis of least-squares refinement, its fundamental 
assumptions and the consequences when these assump- 
tions fail to hold. The proofs of most of the basic prop- 
erties of least squares discussed below may be found in 
Hamilton (1964). 

Classical least squares assumes that we are given 
unbiased observations drawn from a population whose 
errors have finite second moments. It further assumes that 
there is a known linear relationship between the obser- 
vations and the parameters to be determined. For a 
unique least-squares estimate of these parameters, the 
rank of the matrix expressing this relationship must be at 
least equal to the number of parameters to be determined. 

Minimization of a quadratic form weighted with the 
variance-covariance matrix of the observations then 
yields unbiased minimum variance parameter estimates. 
A special case of least squares occurs where the obser- 
vations have errors which are normally distributed. In this 
case, the parameter estimates are also maximum-like- 
lihood estimates. However, unlike the maximum-like- 
lihood method, the least-squares method does not require 
any distributional assumptions regarding the observation 
errors other than the existence and knowledge of the 
second moments of the error distribution. 

expresses a non-linear relationship between the obser- 
vations and the molecular parameters. This limits least- 
squares refinement to a refinement role rather than of 
structure determination. A second assumption concerns 
the accuracy of the model. Two types of inaccuracy may 
be identified. First, the structure factors may be calcu- 
lated on the basis of an incomplete model where atoms 
are missing. In this work ordered solvent atoms and all 
protein atoms (apart from a few seriously disordered 
residues near the N and C termini in yB-crystallin) are 
present in the model. The contribution of disordered 
solvent to the structure amplitudes has been modelled by 
following the principle of Babinet (1837) and modelling 
the solvent continuum by dummy atoms. These are sited 
at protein atomic positions and have large temperature 
factors (Driessen et al., 1989). A second type of model 
error concerns the functional form of the model. Disorder 
has been modelled in terms of isotropic harmonic dis- 
placement and this is certainly a poor model for the more 
mobile side chains where atomic positions might be more 
realistically represented by possibly anharmonic and 
multimodal distributions. 

Errors in the functional form can be classified 
according to whether or not they can be simulated by 
parameter adjustment. Errors that can be simulated by 
parameter adjustment may be called 'silent errors' 
because they will make little contribution to the residuals 
which form the basis of agreement statistics such as R 
factors or correlation coefficients. Isotropic absorption 
may be such an error. Failure to correct either the model 
or the observations for absorption effects will lead to 
underestimated temperature factors but will not add 
much to the R factor. 

Other model errors, such as departures from the har- 
monic model of atomic displacements, will produce 
effects which are nearly equivalent to introducing random 
errors into the observed data. These errors cannot be well 
simulated by parameter adjustment and are probably the 
cause of the higher R factors observed in macromolecular 
crystallography as compared with the crystallography of 
well ordered inorganic structures. Such errors are cer- 
tainly significant in the present work and are treated as 
equivalent to errors in the observed data. 

The presence of the latter errors means that structure- 
amplitude weighting cannot be based on experimental 
standard deviations but must reflect model errors. The 
determination of these weights is described in the next 
section. Incorrect weighting still results in unbiased 
parameter estimates but these estimates have larger var- 
iances than those calculated with correctly weighted 
observations. 

1.2. Limitations of  least squares in macromolecular 
refinement 

We now review these assumptions with respect to 
macromolecular crystallography and their relevance to 
the current work. First the structure-factor model 

2. Methods 

2.1. Calculation of  e.s.d's 

The e.s.d.'s of the atomic coordinates were calculated 
from the inverse matrix H -l obtained from the normal 
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equations formed during the final cycle of least-squares 
refinement. 

The least-squares refinement program R E S T R A I N  
(Moss & Morffew, 1982; Haneefet al., 1985; Driessen et 
al., 1989) was modified to compute the full normal 
equations matrix H with respect to the positional para- 
meters. Temperature factors were treated with the diag- 
onal approximation. 

The function minimized was 

Nrcfl 
M = y~ w,.(lFob~l r - GlF~alclr) 2 

r 

Ndist gplanes 

4- Y~ ws[dt~rg~t(s) - dcalc(S)] 2 4- Z w, et. (1) 
s t 

The factor G is a scale factor between the two sets of 
structure-factor amplitudes. The weights w r are the 
structure-amplitude weights whose relative scale was 
determined from an empirical structure-amplitude 
weighting scheme (Nielsen, 1977) whose parameters 
were adjusted to maximize the entropy 

Nr~fl 

-- Y~ er  ln[Pr], (2) 
r 

where 

w~(lFobsl r - G l e c a l c l r )  2 
Pr = N~on (3) 

Wr(lFobslr -- GlFcalclr) 2 
r 

The absolute scale of the structure-amplitude weights was 
determined by adjustment until the residual M was equal 
to its expected value of n - m, where n is the number of 
observations (including restraints) and m is the number of 
parameters. 

The dtarget and dcalc are the target and calculated 
restraint distances, respectively. The weights w, of the 
distance restraints were chosen as the reciprocals of the 
variances of the deviations from the target distances as 
obtained from small-molecule structures (Engh & Huber, 
1991). The dtarget distances themselves were obtained 
from the same source. 

The planar restraint terms w,e, are the weighted 
minimum eigenvalues of the product-moment matrices 
of the coordinates of the atoms involved in the planes. 
These eigenvalues are the sums of the squares of the 
planar deviations. Use of this term in the expression 
minimized, has the advantage that it does not restrain the 
plane to the plane determined in the previous iteration. 
No restraints were applied to the peptide planes. The 
function M was minimized by solving the normal equa- 
tions 

HAp = v, (4) 

where Ap is the vector of unknown Ap~ values. The 

elements of H and v are 

Nr~n OIF[r 0IFI~ Ho=~w~-- 
r = l  OPi OPj 

Np~.~ 02 e , 
4- Y ~ w , - -  

,=1 OpiOpj 

N,,s. 0d,. 0d,. 
- -  4- ~-" w , . - - - -  

s=l OPi ~Pj 

(5) 

Nr~n OIFIr 
v , -  ~ wr(lFobslr -- G I F c a , c l A - -  

r = l  3Pi 

Nd'st Od~ Npl . . . .  OC t 

+ .,.=El w'[dtargct(S) - dca*c(s)]-O-~P~ - t=, ~ wt--'OPi (6) 

Providing the weights w r are correctly chosen, each term 
H~ 1 of the inverse matrix H -1 is related to the covariance 
between parameters i and j as follows (Cruickshank, 
1965), 

cov(i,j) = H~ 1. (7) 

The diagonal elements of the inverse matrix thus give the 
variances of the corresponding parameters, 

0.~ = H;? 1. (8) 

The inverse matrix H -~ was computed by the matrix 
inversion routines S P P F A  and S P P D I  of L I N P A C K  
(Dongarra et al., 1979), vectorized for the Convex C2 
series computers. These routines implement the Cholesky 
decomposition method. Owing to limitations of real 
memory size, the inversions were performed in single 
precision arithmetic; comparisons performed in double 
precision with matrices of reduced size (i.e. half the 
number of elements) indicated that this caused no sig- 
nificant loss of precision. 

The variances 0.2(x), 0-2@) and a2(z) of the atomic 
coordinates were obtained from the diagonal elements of 
H -t using equation (8). From these, the standard devia- 
tions of the atomic positions (IArl2) ~/2 were calculated 
using 

(IArl2) 1/2 = [0.2(x) 4- 0.2Qv) 4- 0.2(z)]1/2. (9) 

2.2. Struc tures  re f ined 

Two protein structures were used for the computation 
of the e.s.d.'s. Both proteins were crystallins, which are 
proteins found in the fibre cells of the eye lens. The first 
was yB-crystallin (previously called yII crystallin) whose 
structure was determined from X-ray diffraction data 
collected at the Daresbury synchrotron using photo- 
graphic film (Wistow et al., 1983; Najmudin et al., 
1993). The second structure used in this work was that of 
flB2-crystallin from X-ray diffraction data recorded on 
film at the Hamburg synchrotron (Bax et al., 1990). The 
crystal data for the two proteins are listed in 
Table 1. 
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Table 1. X-ray data for protein structures used for cal- 
culations of e.s.d.'s 

0.4 

×B- t~B2- 
crystallin crystallin 

Data resolution (A) 1.49 2.10 0.3 
Space group P4t212 /222 
Protein molecules per asymmetric unit 1 1 
Number of residues 175 177 
Number of  non-H protein atoms 1474 1466 
Number of  ordered solvent molecules 234 92 
Number of  reflections 26151 18583 - ~ "  0.2 
Number of  restraints 3821 3806 
Number of  observations (n) 29972 22389 
Number of  parameters (m) 6835 6259 
n - m 23137 16130 
Observation:parameter ratio 4.39 3.58 
PDB code~ 1 gcs 2bb2 0.1 

t Code associated with the coordinates deposited in the Protein Data 
Bank (Bemstein et al., 1977). 

Table 2. C~stallographic R factors for yB- and 3B2- 
crystallin for structure-factor calculations including only 

reflections within specified high-resolution cut-offs 

Figures in brackets are free R factors calculated from 5% of the 
reflection data which was omitted until the final stage of  refinement. 

Cut-off, yB- flB2- 
dmin (A) crystallin crystallin 

1.49 0.180 (0.204) -- 
2.10 0.167 0.184 (0.200) 
2.50 0.164 0.184 
3.00 0.162 0.185 

Each structure was rerefined using the weighting pro- 
tocol described above and Table 2 shows the R factors of 
both structures which were calculated with different high- 
resolution cutoffs. No low-resolution cutoff was applied 
because solvent corrections to the calculated structure 
amplitudes were applied using Babinet's (1837) principle 
(see above). 

3. Results 

Fig. 1 shows a plot of the root-mean-square error 
([Arl2) 1/2 against the isotropic atomic U for all atoms in 
the yB-crystallin structure, refined at 1.49 A. It should be 
noted that the large majority of atoms have Uiso<0.25 
and (IArl2)l/2<0.1. Fig. 2 shows a similar plot where the 
standard deviations of individual atoms have been nor- 
malized according to their atomic numbers. This was 
accomplished by scaling to oxygen by multiplying 
(IAr[2) 1/2 by the atomic number of the atom divided by 
eight. Comparison with Fig. 1 shows that most points 
now lie close to or below the plotted curve. The cloud of 
outliers which fall below the curve arise from protein 
atoms which are subject to strong geometrical restraints 
which result in relatively lower (IArl2) ~/2 values. Fig. 3 
shows similar plots where the protein atoms have been 

0"00.0 0.2 0'.4 016 0.8 
Uiso 

Fig. 1. The estimated (JArl2) 1/2 (A) for atoms in the yB-crystallin 
structure, refined at 1.49 A, plotted against the isotropic atomic U 
value (A2). Atoms with U values greater than 0.8 A 2 are not shown. 
The plotted curve has been fitted to the data points for the water 
atoms only. The curve has the form (IArl2) 1/2 = a(Uis o + b) c. The a, 
b and c parameters for the fitted curve are listed in Table 5 for 1.49 A. 

0.4 

x 

0.3 

0.2- x t x 

x~X~ ~x 

:~x x x ~ ~x~ x 

0.0 
0.0 0.2 014 0'.6 0.8 

Fig. 2. Plot of  (IArlZ) l/z (A), normalized by atomic number, as a 
function of  the isotropic atomic U value (A 2) for the 1.49 A refined 
structure of  yB-crystallin. The plotted curve has been fitted to the 
data points for the water atoms only. The curve has the form 
(IArl2) 1/2 -- a(Uis o n t- b) c. The curve is as in Fig. 1. 
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(e) ( f )  

Fig. 3. Effects of  the number of  refinement restraints (distance as well as planarity restraints) on the atomic ([Ar]2) ]/2 values. Each figure shows the 
normalized atomic (IArl2) 1/2 values (A) for the 1.49 A refined structure of  yB-crystallin (as in Fig. 2) as a function of  the atom's isotropic U value 
(A2). The plots show: (a) all atoms with no restraints (i.e. water molecules); (b) atoms with two restraints; (c) three restraints; (d) four restraints; 

(e) five restraints; and 0 c) six restraints. 
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subdivided according to the number of restraints to which 
the atom is subject. A larger number of restraints results 
in relatively greater precision but also results in a less 
well defined relationship between (IArl2) 1/2 and U This 
is due to the differing effects of the different combina- 
tions of bond, bond angle and planar restraints. 

Fig. 4 illustrates the effect of resolution on these all- 
atom plots from the two crystallin structures. The points 
are plotted for a truncated resolution of 2.10 A in each 
case. The lines have been fitted to the water data 
assuming a simple relationship of the form 
(IArl2)l/2 = a(Uo + b) c. Average errors in atomic posi- 
tions for groups of atoms Ar have been estimated from 
the refinements at their highest resolutions and are dis- 
played in Table 3 together with the associated overall 
temperature factor Uo for each group. Simple averaging 
of thermal parameters is sensitive to outlying values 
which can be very large and, therefore, poorly defined by 
the diffraction data. Such outliers are not uncommon in 
the side chains of protein molecules and can be seen in 
Fig. 4. The same considerations apply to averaging 
errors. Average errors calculated by the methods of 
Luzzati (1952) or Read (1986) are not sensitive to out- 

Table 3. (do values (3 2) and average coordinate errors --~ 
in atomic positions (A) calculated by the method 

described in Appendix A 

yB-crystallin flB2-crystallin 
(din, . 1.49 A) (dram 2.10 A) 

Uo Ar U o Ar 
Main-chain atoms 0.16 0.05 0.37 0.08 
Side-chain atoms 0.22 0.14 0.44 0.20 
All protein atoms 0.19 0.10 0.40 0.15 
Water O atoms 0.45 0.27 0.65 0.35 
All atoms 0.20 0.13 0.41 0.17 
All atoms (Luzzati, 1952) 0.16 0.21 
All atoms (Read, 1986) 0.12 0.17 

liers. For comparison with our values a statistically robust 
averaging technique is required. Such a technique has 
been used in this paper and is described in Appendix A. 

4. Conclusions 

4.1. Mean-square deviations of the calculated restraints 

Fixing the scale of the structure-amplitude weights so 
that the residual minimized equals its statistical expec- 

7B-crystallin, 2.1 ,~ r-B2 crystallin, 2.1 ,~ 
1.6 1.6 

2.1A 
2.1A ~ /  

2.5 
1.4 3.0 ,~ 2.5 ,~ 1.49 ,~, 1.4- 

. :1.,..,, 3.o/~ ;/,. 
, ' 1# / 7 ] # *' 

1.2 ,, / / / _  1.2 ,,, ' / ~ 

1.0 ~#/' ' / /  1.0 . ' " ' / / /  ill t/I; i t/# • , i I 
" ,, / 

2"" 0.8 ~- o.8 

, "• j ' ## / • 

0.60.4 , 0.6 0.4 """ y , , * ,x 

° -  x,~ x •x x 0 . 2  . . . ° . ' ° ' " ° ' "  ° 
0.2 ....- ~ ,, ,x ",  

. . . - ' "  , x • x  *t , ,  x x  x x 

• 7 " : ' :  
0.0 , , , , , 0 . 0  , , , , 

0.0 0.'25 015 0.75 1.0 1.25 1.5 1.75 2.0 0.0 0.25 0'.5 0175 1.0 1.25 1.5 (.75 2.0 

U~o Ui~o 
(a) (b) 

Fig. 4. The estimated (IArl 2) 1/2 (A) as a function of the isotropic atomic U value (A 2) for (a) yB-crystallin, calculated using data to 2. l0 tit, and (b) 
flB2-crystallin refined to 2.10 A. The (IArl2) 1/2 values in both cases have been normalized to take atomic number into account. The curves on the 
plots show the best-fit lines for the water atoms. The lines have been fitted assuming the relationship (IArl2) 1/2 = a(Uis o + b f .  The a, b and c 
parameters for the fitted curves in the plots are listed in Table 5. The different curves on each plot give the results for e.s.d.'s calculated using data 
sets truncated to different resolutions: for ),B-crystallin these are 1.49 A, the resolution at which the structure was refined (also shown in Fig. 2), 
and three truncated data sets corresponding to 2.10, 2.50 and 3.00 A; for flB2-crystallin the curves correspond to 2.10 A (the resolution at which 
the structure was refined), 2.50 and 3.00 A. 
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tation value, n - m, results in mean-square deviations of 
the calculated restraints from their target values which are 
smaller than the corresponding deviations observed by 
Engh & Huber (1991) in small-molecule structures and 
used for weighting the restraints in this work. The rele- 
vant mean-square deviations are displayed in Table 4 and 
show that the root-mean-square deviations of  all dis- 
tances at the convergence of the refinements are mostly 
less than two thirds of  the Engh and Huber values. It is 
shown in Appendix B that the expected value of the 
calculated distance variance is 

~ w.,[dtarget(s) - dcalc(S)] 2 = Ndist - -  t r ( l - ~ - | l - - I d i s t ) ,  
s 

(10) 

where l-ldist is the normal matrix formed with distance 
terms only, w.,. is the reciprocal of the Engh and Huber 
variance and tr denotes the trace operation. Evaluation of 
both sides of this equation was undertaken for ¢IB2- 
crystallin at 2.1 .~ resolution although calculation of the 
trace is only approximate since It  is not a full matrix with 
respect to the temperature factors. The results are 

Ndlst  

ws[dtarget(s ) - dcalc(S)] 2 = 834 
s 

and 

N d i s t  - -  t r ( H - 1 H d i s t )  : 3546 - 2630 = 916. 

It should also be noted that the minimum variance 
structure will have a higher R than a structure refined so 
as to get mean-square deviations from ideal geometry 
equal to Engh and Huber variances. We suspect that 
many crystallographers just aim at the lowest R factor 
which is consistent with results from a validation pro- 
gram such as PROCHECK (Laskowski et al., 1993) that 
are thought to be acceptable to a referee! 

4.2. Average errors in atomic coordinates 

The average errors in atomic positions calculated from 
the refinements and shown in Table 3 take into account 
the random errors in the data and also such errors in the 
model that produce random fluctuations in the residuals 
but not any silent errors in the model. As expected for a 
restrained refinement, the errors in the protein atoms 
depend strongly on the number of  geometrical restraints 
associated with the particular atom. These errors may be 
highly anisotropic. 

Comparison of  average errors in protein coordinates 
will always be sensitive to the averaging technique due to 
the very skew distribution of  error among the atoms. 
Using the robust averaging technique described in 
Appendix A, our all-atom error estimates in Table 3 are 
lower than those produced by the method of  Luzzati but 
in good agreement with the method of Read. 

Table 4. Root-mean square deviations from target values 
at the end o f  refinement compared with literature stan- 
dard deviations derived from Engh & Huber (1991) (•) 

m|n 

Bond distances (1-2) 
Angle distances (1-3) 
All distances 

yB- /~B2- Standard 
crystallin crystallin deviation 

1.49 2.10 
0.010 0.009 0.022 
0.025 0.022 0.037 
0.020 0.018 0.032 

Table 5. Parameters for  the various curves in Fig. 4, fitted 
to the data for  the water atoms using curves o f  the form 

(IArlZ) 1/2 -- a(Uiso + b) c 

Resolution Parameters 
Structure cut-off (A) a b c 

yB-crystallin 1.49 0.513 0.090 1.80 
2.10 0.190 0.591 2.59 
2.50 0.0651 1.150 3.13 
3.00 0.0068 2.478 4.00 

/JB2-crystallin 2.10 0.127 0.478 2.84 
2.50 0.0194 1.282 3.77 
3.00 1.11 x 10 -~ 4.909 7.40 

Table 5 shows the coefficients used in the polynomials 
that generated the curves in Fig. 4 which describe the 
relationship between the standard deviations of the water 
positions and their temperature factors. It can be seen that 
the power of  the temperature factor in these formulae 
increases with resolution. This is because at lower reso- 
lution, waters with a high temperature factor are more 
poorly defined. Cruickshank (1996) suggested a similar 
expression for errors which was quadratic in U and which 
gives qualitative agreement with our results at about 
1.6 A resolution. Although the functional form of the 
relationship between the coordinate standard deviation 
and temperature factor is simple, values of  the constants 
in the formula depend on the quality of  the raw X-ray 
data. This makes the derivation of a formula linking 
standard deviation and temperature factor a difficult task 
which we shall attempt in future work. 

APPENDIX A 
The 'average' isotropic thermal parameter and 

'average' coordinate error 

Simple averaging of  thermal parameters is sensitive to 
outlying values which can be very large and therefore 
poorly defined by the diffraction data. Such outliers are 
not uncommon in the side chains of  protein molecules. 
The same considerations apply to the averaging of  errors. 
What is needed is a statistically robust averaging tech- 
nique. The method used in this paper is based on aver- 
aging the exponential temperature-factor expressions, 
rather than averaging the U values themselves. Blessing 
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et al. (1996) have described a method for averaging these 
expressions but their method assumes that the U values 
are normally distributed. Since the distribution may be 
skew in a macromolecular crystal, we use a method that 
avoids this assumption. 

Assume we have two identical models, except that in 
one the atoms have individual isotropic thermal para- 
meters Uj, and in the other the atoms have the same 
overall U = Uo. Then define the 'average' U of the first 
model to be equal to Uo when ~ IFhl 2 is the same for 
both models. This is not necessarily the optimum defi- 
nition, but it does have the advantage of leading to a 
reasonably tractable solution. 

The 'average' coordinate error is obtained in the same 
way by treating it as equivalent to an isotropic thermal 
parameter with a value equal to one third the mean- 
square coordinate error (Read, 1986), 

U' = (IArl 2)/3. 

Assuming Wilson's statistics (randomly distributed 
atoms), 

[Fhl 2 = To2(S)Ef2(s)= Efj2(s)TT(s), 
J J 

where the overbar indicates arithmetic mean throughout, 
s is the reciprocal lattice vector, the temperature factor is 
given by To(S ) = exp(-27r21s12Uo), and 
Tj(s) = exp(-2rr21sl 2 Uj). 

Now, assuming equal atoms, replacing the sum over 
atoms with an arithmetic mean, and integrating over 
reciprocal lattice points within a sphere of radius ISlmax, 

[SMax ISlmax _ _  
f rg(s)lsladlsl = f Tj2(s)[s[2d[s] • 
0 0 

Substituting for To(S ) and Tj(s) 

ISlmax 

f exp(-4n2lsl2go)lsl2dlsl 
0 

IS/max 
= f exp(-4nZlsl2Uj)lsl2dlsl. 

Therefore, 

Xo XJ 

Xo 3 f e x p ( - t 2 / 2 ) t 2 d t  = x f  3 f e x p ( - t 2 / 2 ) t 2 d t ,  (11) 
0 0 

3/2 1/2 23/27f u j l /2  iS[max" where x o = 2 nU'o [$]max and xj = 
The integrals on both sides of equation (11) can be 

evaluated as 

f e x p ( - f l / 2 ) t Z d t  = f e x p ( - t 2 / 2 ) d t  - x exp(-x2/2) 
0 0 

- -  ( z r / 2 )  1/2 ~ ( x )  - -  x exp(-x2/2) 

where • is the 'error integral'. 

Using this result and rearranging (11) we obtain 

• (Xo) - (2/7r)l/2x o e x p ( - ~ / 2 )  - Ax3o = O, 

where 

(12) 

A = xf3[di ) (x j )  - (2 /Tr ) l /2x j  exp( -~ /2 ) ] .  

The value of A is computed for the set of atoms whose 
U's are to be averaged, and then (12) solved for )Co, and 
hence Uo, by Newton's method starting from an initial 
guess for x o. To solve (12), where the left-hand side is 
written as y(Xo), shifts of magnitude -y(Xo)/y ' (Xo) are 
applied iteratively to x o until convergence, where the 
derivative o fy ( xo )  is 

y'(Xo) = ( 2 / 7 r ) l / Z x ~ o  e x p ( - ~ / 2 )  - 3A~. 

A good initial guess for x o is 

0 A I / 3  2(n/A)Z. X ° --- 

Finally 

Uo -- ~ / ( 8 ~  ISIZm~,). 

APPENDIX B 
The expected value of least-squares residuals 

In this Appendix  we first show that second moment 
matrix of least-squares residuals is equal to the difference 
between the variance-covariance matrix (VCM) of the 
observations (structure amplitudes and distances) and the 
VCM of the corresponding quantities calculated from the 
parameter estimates at the convergence of a refinement. 
Subtraces of the second moment matrix of the residuals 
yield the expected values of the sum of subsets of resi- 
duals, including the case of the expected value of the 
distance residuals which is shown to be smaller than the 
variance of the observed distances. 

We define the following column matrices: 
f the observations (structure amplitudes and target 

distances); 
f the least-squares estimates of f calculated at the 

convergence of the refinement; 
i the least-squares estimates of the parameters calcu- 

lated from f; 
A = f - f the least-squares residuals. 
We further define the following rectangular matrices: 
A the least-squares design matrix of order n × m 

where n is the number of observations and m is the 
number of parameters; 

W the n × n symmetric weight matrix and 
W-i = ( ( f _  ( f ) ) ( f_  (f))r) is the VCM of the observa- 
tions where (f) is the expected value of f; 

H the m x m normal matrix given by ArWA; 
R an n × n idempotent matrix ( R 2 =  R) given by 

AH-IArw.  
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Given these definitions the normal equations at con- 
vergence can be written as 

0 = ( A r W A ) - I A r W A  

= H-ITrWA.  

If the errors in the observations are not too large then 
truncated Taylor expansions may be written about the 
expected values of the parameter vector (x) and the 
observation vector (f). 

-- (x) = H - l A r W ( f -  (f)) 

- (f)  = A ( k -  (x)) .  

Hence, 

f - -  (f)  : A H - 1 A r W ( f -  ( f ) )  

= R ( f  - ( f ) ) .  ( 1 3 )  

Using the definition of R, the second moment matrix of 
the residuals D = (AA r) is given by 

D = ( I  - R ) W - ' ( I n - R )  r 

_ W - I  + R W - I R  r _ 2 R W  -1 

= W -I - RW -1, (14) 

where I n is a unit matrix of order n. From (13) the VCM 
of f is 

which is (10). From (15) the expected value of the ith 
squared distance residual is given by 

(wi[dtarget(i) - dealt(i)] 2 ) : 1 - Rii, 

where R~; is the relevant diagonal element of  R. 
Thus 

( [ d t a r g e t ( / )  - -  d e a l t ( i ) ]  2 )  : O2E(1 - -  eii ) 
= O-~ -- a r H - l a i  

where o~ is the variance given by Engh & Huber (1991) 
and a i is the relevant row of A. The expected mean- 
square distance residual is less than o~ because a,rH -l a i 
is a positive definite quadratic form. 

A well known special case of (16) occurs when p = n. 
In this case (16) yields the expected value of the total 
residual (M). 

(M) = p - tr(H-1Hp) 

= n - tr(Im) 

- - n - - m .  

Fhis result was used in the present work for determining 
the scale of the structure-amplitude weights. 

The authors would like to thank Professor D. W. J. 
Cruickshank FRS for his helpful comments on this paper. 

( ({_  ( f ) ) ( ~ _  ( f ) ) r )  : R W - ~  

and thus from (14) we see that D is equal to the differ- 
ence between the VCM of the observations and the VCM 
of the corresponding quantities calculated from the 
refined parameters. 

Equation (14) can be rewritten as 

D W  - - I - R .  (15 )  

IfAp is the matrix containing p rows of A, and DpRp and 
Wp are the corresponding p x p diagonal submatrices of 
D, R and W, respectively, then 

O p W p = I p - R p .  

Taking the trace of both sides 

tr(DpWp) = p - t r ( A p H - 1 A ; W p )  

= p - t r (H- l A rp WpAp) 

= p - tr(H-~Hp) (16) 

where H; : A;WpAp. 
If the p rows of Ap correspond to the distance 

restraints and we assume that the weight matrix is diag- 
onal, then (16) can be written as 

s 
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